JT633xA 系列 可编程直流电子负载 用户使用手册

适用型号

JT6331A/JT6332A/JT6333A/ JT6334A/JT6335A/JT6336A

版本号: V2.5 南京嘉拓电子有限公司 版权所有

第-	一章:	简介.		1
	1.1.	主要特	特点:	1
第二	二章:	技术规	见格	2
	2.1.	主要	技术规格	2
	2.2.	补充物	特性	5
第三	三章:	快速)	\j`]	6
	3.1.	前后	面板介绍	6
	3.2.	开机ī	前的准备	6
	3.3.	开机	自检	7
	3.4.	状态	栏显示字符说明	7
	3.5.	设定	栏显示字符说明	7
	3.6.	测量	项显示字符说明	7
	3.7.	按键	说明	8
	3.8.	接口知	定义电气说明	8
	3.9.	主菜」	单操作说明	9
第	四章:	面板掛	桑作	14
	4.1.	系统	设置(System Set)	
		4.1.1.	负载可操作范围	
		4.1.2.	电压电流档位选择	
		4.1.3.	保护电流设置	
		4.1.4.	保护功率设置	
		4.1.5.	电流变化斜率设置	
		4.1.6.	Von/Voff设置	
		4.1.7.	被测源类型设置	
	4.2.	输入	控制	
		4.2.1.	输入开关操作(On/Off)	
		4.2.2.	短路操作(Short)	
	4.3.		操作(Trigger)	
	4.4.		操作模式	
		4.4.1.	定电流模式 (CC)	
		4.4.2.	定电压模式(CV)	
		4.4.3.	定功率模式 (CP)	
		4.4.4.	_ 定电阻模式(CR)	
			模式	
	4.6.	/· - ·	操作模式(DYNA)	
	4.7.		程序列操作模式(List)	
		4.8.1.	电压平均值(V)、电流平均值(I)测量	
		4.8.2.	电压纹波 (V _{PP})、电流纹波 (I _{PP}) 测量	
		4.8.3. * * * * * * * * * * * * * * * * * * *	电压峰值(V _{P+} /V _{P-})、电流峰值(I _{P+} /I _{P-})测量	
			综合测试模式(S-Test)	
			过流保护测试(OCP)	
		4.9.2. · 瞬大/	- 负载效应测试(Load Effect) 综合测试模式(T-Test)	
	4 1()	I Hかた ☆~2	(元) (JUNITA (PR. T) 、 U I = I PCI)	19

南京嘉拓电子有限公司

	4.10.1. 动态变频扫描(Sweep)	19
	4.10.2. 时间量测(Timing)	19
	4.10.3. 过电压保护测试(OVP)	20
	4.11. 自动测试模式(A-Test)	20
	4.12. 电池电量测试模式(Battery)	21
	4.13. 同步主从式并机时序控制	21
	4.14. 远端补偿	22
	4.15. 保护功能	22
	4.15.1. 过压保护	22
	4.15.2. 过流保护	23
	4.15.3. 过功率保护	23
	4.15.4. 过热保护	23
	4.15.5. 输入极性反接保护	23
	4.16. 存取操作	23
	4.17. 调节旋钮的使用	23
	4.18. 个性化显示设置	23
第三	五章: 通信协议(SCPI)	24
	5.1. SCPI命令概述	24
	5.2. 寄存器说明	24
	5.3. 共同命令	25
	5.4. 必备命令	27
	5.4.1. 系统命令	27
	5.4.2. 状态命令	27
	5.5. 输入设置命令	28
	5.5.1. 输入控制	28
	5.5.2. 系统参数设定	28
	5.5.3. 工作模式控制	30
	5.5.4. 工作参数设定	30
	5.6. 测量命令	33
	5.7. OCP测试命令	34
	5.8. OVP测试命令	35
	5.9. Timing测试命令	36
	5.10. Peak 测试命令	
	5.11 TWaveform 瞬态波形擢取命今	38

第一章: 简介

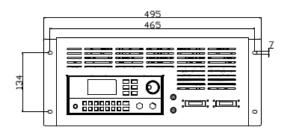
JT633x 系列电子负载,借助 500KHz 高速同步采样及 DSP 技术,全面加强瞬态测试以及多方位的智能分析,并全面整合到自动测试功能,特别适用于电源及相关行业的量产与来料检测;而可编程电流上升率、高速动态带载及可编程序列功能,亦可以满足大部分的研发需要;特有的同步主从式并机时序,则可以满足多路输出电源的同步带载需要,及单路输出电源的功率扩展需要。

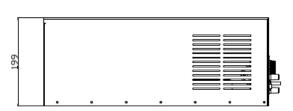
1.1.主要特点:

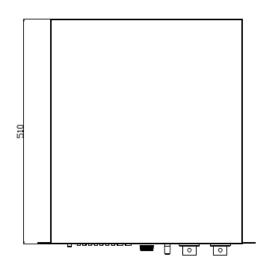
- ★ 支持 16 台负载的同步带载,满足多路输出电源的测试需要。
- ★ 支持 16 台负载的同步并机,满足单路输出电源的功率扩展需要。
- ★ 500KHz 同步采样,10Hz 数据显示刷新率。
- ★ 电压/电流纹波 (Vpp/Ipp)、峰值 (Vp+/Ip+)、谷值 (Vp-/Ip-) 量测。
- ★ 最快满量程电流上升时间 50uS, 可编程电流上升/下降率。
- ★ 定电流、定电压、定功率、定电阻四种基本操作模式。
- ★ 支持真实 LED 模拟功能。
- ★ 支持 CV/CC 源定功率/定电阻, 定电阻模式 CV/CC 源智能侦测与匹配。
- ★ 高达 50KHz 动态带载模式 (DYNA),及电压峰谷 Vp+、Vp-量测。
- ★ 支持过流保护测试(OCP)及最大功率点捕捉(Pmax)。
- ★ 支持负载效应量测(Load Effect)
- ★ 高速动态变频扫描技术(sweep)。
- ★ 支持时间量测(Timing)。
- ★ 支持过压保护(OVP)测试。
- ★ 内建波形发生器,在 List 模式下,可模拟各种带载波形。
- ★ 支持短路 (Short) 模拟功能。
- ★ 支持单机自动测试(A-Test),支持所有扩展模式,支持所有检测项。
- ★ 支持电池内阻及电量测试(Battery)。
- ★ 支持远端补偿。
- ★ 支持 Von、Voff 功能。
- ★ 快捷方式支持 20 组全局数据的存储与读取。
- ★ 高亮度全视角大屏幕图形点阵显示屏。
- ★ 过电压/过电流/过功率/过热保护: 电源极性反接保护。
- ★ 无级伺服、智能风扇系统。
- ★ 电气隔离,外部触发输入输出。
- ★ 电气隔离,标准 RS232 接口。
- ★ 支持电流波形监控输出。
- ★ 标准 SCPI 协议。

1

第二章: 技术规格


2.1.主要技术规格


型号		JT6331A		JT6332A		
	功率	180	1800W		2400W	
党石	电压	0~15V	0~150V	0~15V	0~150V	
一般定	电流	0~36A	0~360A	0~50A	0~500A	
额定输入	最低操作电压	1.4V@	0360A	1.4V@	0500A	
	最小满量程电		50	uS		
	流爬升时间			u3 		
СС	范围	0~36A	0~360A	0~50A	0~500A	
模式	细度	1mA	10mA	1mA	10mA	
天工	精度		0.03%+0).05%FS		
CV	范围	0~15V	0~150V	0~50V	0~500V	
模式	细度	0.2mV	2mV	0.5mV	5mV	
沃巧	精度		0.03%+0).02%FS		
СР	范围	60	OW	120	WOO	
模式	细度		168	Bits		
沃巧	精度		0.1%+0	0.1%FS		
CR	范围	0.004Ω	2~50KΩ	0.003Ω~25ΚΩ		
模式	细度		168	Bits		
沃巧	精度	0.1%+0.0004R		0.1%+0	0.0008R	
LED	带宽		100kH	z以上		
模式	Rd 系数范围	0.001~1				
动态	范围	10uS~50S				
操作	细度	2uS				
模式	精度		1uS+2	20PPM		
大工	压摆率	7.2A/mS	~7.2A/uS	4.8A/mS~24A/uS		
电压	范围	0~15V	0~150V	0~15V	0~150V	
量测	分辨率	0.1mV	1mV	0.1mV	1mV	
里切	精度		0.015%+	0.03%FS		
电流	范围	0~36A	0~360A	0~50A	0~500A	
量测	分辨率	1mA	10mA	1mA	10mA	
生(次)	精度		0.015%+	0.05%FS		
纹波	范围	0~15V	0~150V	0~50V	0~500V	
量測	带宽		10Hz~2	250kHz		
里侧	精度	0.03%+1mV	0.03%+10mV	0.03%+3mV	0.03%+30mV	


型号		JT6333A		JT6334A		
	功率	300	WO	180	00W	
宏石	电压	0~15V	0~150V	0~50V	0~500V	
一般定	电流	0~50A	0~500A	0~18A	0~180A	
额定输入	最低操作电压	1.4V@	0500A	2.8V@	0180A	
	最小满量程电		50	119		
	流爬升时间					
СС	范围	0~50A	0~500A	0~18A	0~180A	
模式	细度	1mA	10mA	1mA	10mA	
大人	精度		0.03%+0).05%FS		
CV	范围	0~15V	0~150V	0~50V	0~500V	
模式	细度	0.2mV	2mV	0.5mV	5mV	
沃巧	精度		0.03%+0).02%FS		
СР	范围	300	WO	180	WOO	
模式	细度		168	Bits		
沃山	精度		0.1%+0	0.1%FS		
CR	范围	0.047Ω	~50KΩ	0.024Ω~50ΚΩ		
模式	细度		168	Bits		
沃巧	精度	0.1%+0.0004R		0.1%+0).0006R	
LED	带宽		100kH	z以上		
模式	Rd 系数范围	0.001~1				
动态	范围	10uS~50S				
操作	细度		2ւ	uS		
模式	精度		1uS+2	20PPM		
沃巧	压摆率	10A/mS~50A/uS		3.6A/mS~18A/uS		
电压	范围	0~15V	0~150V	0~50V	0~500V	
量测	分辨率	0.1mV	1mV	0.1mV	1mV	
里切	精度		0.015%+	0.03%FS		
电流	范围	0~50A	0~500A	0~18A	0~180A	
量测	分辨率	1mA	10mA	1mA	10mA	
生伙	精度		0.015%+	0.05%FS		
纹波	范围	0~15V	0~150V	0~50V	0~500V	
量测	带宽		10Hz~2	250kHz		
生(次)	精度	0.03%+1mV	0.03%+10mV	0.03%+3mV	0.03%+30mV	

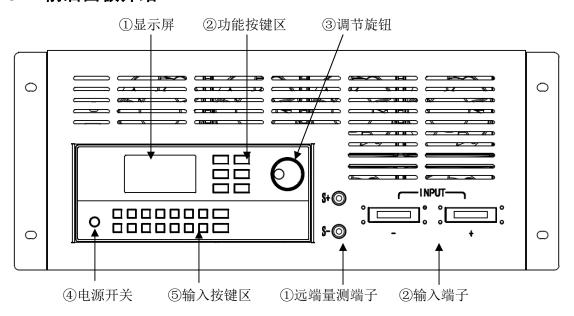
	型号	JT6335A		JT6336A		
	功率	2400W		300	0W	
党石	电压	0~50V	0~500V	0~50V	0~500V	
额定输入	电流	0~24A	0~240A	0~24A	0~240A	
输	最低操作电压	2.8V@)240A	2.8V@	0240A	
	最小满量程电		50	0		
	流爬升时间		50	uS		
СС	范围	0~24A	0~240A	0~24A	0~240A	
模式	细度	1mA	10mA	1mA	10mA	
(天八	精度		0.03%+0).05%FS		
CV	范围	0~50V	0~500V	0~50V	0~500V	
模式	细度	0.5mV	5mV	0.5mV	5mV	
(天八	精度		0.03%+0	J.02%FS		
СР	范围	240	OW	3000W		
模式	细度		168	Bits		
疾八	精度		0.1%+0).1%FS		
CR	范围	0.024Ω~50ΚΩ		0.012Ω	~50KΩ	
模式	细度		168	Bits		
疾八	精度	0.1%+0.0008R		0.1%+0	.0008R	
LED	带宽	100kHz 以上				
模式	Rd 系数范围	0.001~1				
动态	范围	10uS~50S				
操作	细度		2ເ	ıS		
模式	精度		1uS+2	20PPM		
沃巧	压摆率	4.8A/mS	~24A/uS	4.8A/mS	~24A/uS	
电压	范围	0~50V	0~500V	0~50V	0~500V	
量测	分辨率	0.1mV	1mV	0.1mV	1mV	
里(内)	精度		0.015%+	0.03%FS		
电流	范围	0~24A	0~240A	0~24A	0~240A	
量测	分辨率	1mA	10mA	1mA	10mA	
生奶	精度		0.015%+	0.05%FS		

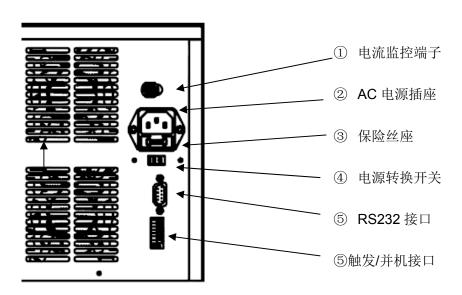
2.2. 安装尺寸

2.3. 补充特性

整机尺寸(W*H*D): 495mm*199mm*510mm

交流电源输入范围(可通过后面板切换开关进行选择):


(1) AC220V ±10% 50Hz/60Hz (2) AC110V ±10% 50Hz/60Hz


散热方式: 强制风冷 操作温度: 0~40℃ 存储温度: -20~70℃

使用环境: 室内使用设计,最大湿度 95%

第三章: 快速入门

3.1. 前后面板介绍

3.2. 开机前的准备

- 1) 负载的工作电压有 110V/220V 两种方式,请检查负载的电压设置是否与供电电压相匹配。
 - 2) 负载的保险丝应与设置电压相匹配,请按下表检查是否正确安装保险丝。

AC 输入电压设置	AC110V	AC220V
保险丝规格	T2.5A/250V	T1.25A/250V

3.3. 开机自检

电子负载上电后,将显示制造商、产品型号、软件版本号等信息,并进行系统自检。如果自检不通过,请用户对照出错信息列表建议进行处理。

出错信息	处理办法		
ROM Checksum Error	固件代码校验错误,请联系制造商/供应商		
SN Error	序列号错误,请联系制造商/供应商		
Cal. Data Error	标定数据错误,请重新标定或联系制造商/供应商		
Temp. Data Error	温度数据出错,请联系制造商/供应商		
ADC / DAC Error	硬件故障,请联系制造商或供应商		
无显示且间歇性鸣叫	请检查 AC 输入电压是否过低		

3.4. 状态栏显示字符说明

ON	输入开启	OFF	输入关闭
CC	负载为定电流模式	CV	负载为定电压模式
CP	负载为定功率模式	CR	负载为定电阻模式
DYNA	负载为动态操作模式	List	负载为可编程序列操作模式
LED	负载为 LED 模式	Auto	负载为自动测试模式
RI	负载处于远程禁止状态	Trig	负载在等待触发信号
Shift	启动复用功能键	Sense	负载启用远端补偿功能
Rmt	负载处于远程控制模式	Lock	键盘被锁定,等待密码开启
OC	负载处于过流保护状态	OP	负载处于过功率保护状态

3.5. 设定栏显示字符说明

Iset	CC 模式下的设定电流值	Vset	CV 模式下的设定电压值
Pset	CP 模式下的设定功率值	Rset	CR 模式下的设定电阻值
Short	输入短路状态		

3.6. 测量项显示字符说明

显示项目名称说明:

V	输入电压直流量测量值	I	拉载电流直流量测量值
Р	拉载功率平均值测量值	R	负载等效电阻测量值
Vpp	输入电压纹波峰峰值	Ipp	拉载电流纹波峰峰值
Vp+	输入电压峰值	Vp-	输入电压谷值
Ip+	拉载电流峰值	Ip-	拉载电流谷值

显示单位名称说明:

V	电压单位,伏特	Α	电流单位,安培
W	功率单位, 瓦特	R	电阻单位,欧姆
V+	电压峰值单位,伏特	V-	电压谷值单位,伏特
A+	电流峰值单位,安培	A-	电流谷值单位,安培
Vp	电压纹波峰峰值单位,伏特	Ар	电流纹波峰峰值单位,安培

3.7. 按键说明

一般按键定义:

I-Set	CC 模式启动或设置	V-Set	CV 模式启动或设置
P-Set	CP 模式启动或设置	R-Set	CR 模式启动或设置
Shift	复用功能键使能或禁止	On/Off	输入开启或关闭
0~9	数字键	•	小数点键
←	退格键	Esc	退出键
A	方向键,向上翻屏	▼	方向键,向下翻屏
Enter	确认键		

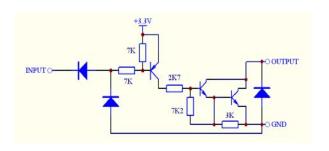
复用功能键定义(<Shift>键按下后生效,右上有"Shift"提示字符显示):

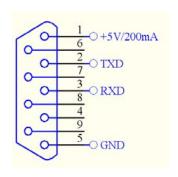
DYNA	动态模式启动或设置	List	List 模式启动或设置
Battery	电池测试模式启动或设置	Short	短路状态使能或禁止
Local	使能面板功能	Trigger	触发操作
S-Test	静态智能测试模式	T-Test	动态智能测试模式
A-Test	自动测试模式	Store	数据快捷存储
Recall	数据快捷调用	Menu	主菜单
A	快捷切换显示格式	▼	快捷切换数据刷新速率

3.8. 接口定义电气说明

负载提供 6 个 10MHz 隔离端口,用于触发信号的输入输出,也用于主从模式下的同步并机时序控制,其定义与电气特性如下。

端口名称	单机模式	主机模式	从机模式	属性
GND	隔离地	隔离地	隔离地	隔离地
TRIG	触发信号输入	触发信号输入	保留	输入
RI	远程禁止信号输入	从机同步信号输入	主机同步信号输入	输入
DFI	设备故障指示	主机同步信号输出	从机同步信号输出	输出
TX	触发信号输出	UART 数据输出	UART 数据输出	输出
RX	保留	UART 数据输入	UART 数据输入	输入


极限参数(超过此范围会损坏设备接口)


参数	描述	极限值	单位
V_{CEO}	OC 门输出上拉电平	-0.5 ~ 50	V
I_{CEO}	OC 门输出灌电流	0~100	mA
$V_{\rm I}$	输入电压	-0.5~12	V

推荐工作条件

参数	描述	Min	Туре	Max	单位					
VIH	"H"输入电压	2.7	3.3	12	V					
VIL	"L"输入电压	0	0	1	V					
备注: 输入	备注:输入开路等效于"H",输入与 GND 短路等效于"L"									

左下图为输入输出接口电气原理图,负载亦提供一标准隔离 RS232 接口,及一组 5V/200mA 的隔离电源输出,其接线图如右下所示。负载还提供一个电流监控端子(I-MONITOR),其输出范围为 0~10V,带宽 50Khz,用以观察带载波形。

3.9. 主菜单操作说明

	菜单				说明	
Men	ıu				主菜单	
	Con	fig			参数配置子菜单	
		Measure Rate			测量速度设置(快捷方式: <shift+▼>)</shift+▼>	
			Fast		数据刷新频率 10Hz, 速度快, 稳定性差	
			Med	ium	数据刷新频率 5Hz,速度与稳定性折中	
			Slow	I	数据刷新频率 2Hz,速度慢,稳定性好	
		Rem	ote S	ense	远端补偿设置	
			ON		远端补偿使能	
			OFF		远端补偿禁止	
		Inpu	ıt Rec	all	输入状态记忆设置	
			ON		开机时,输入状态恢复为关机前的状态	
		OFF			开机时,输入状态为关闭	
		Key Sound			按键提示音设置	
			ON		按键提示音使能	
		OFF			按键提示音禁止	
	_	Key Lock			按键锁设置	
	Config	ON			按键锁使能,按键连续空闲 5S,自动锁死	
	ηfig		OFF		按键锁禁止	
		Kno	b Loc	k	调节旋钮微调功能设置	
			ON		调节旋钮微调功能禁止	
		OFF			调节旋钮微调功能使能	
		Trig.	In Sp	eed	触发信号响应速度设置	
			High		快速响应,适用高质量信号(比如程控信号)	
			Low		慢速响应,适用低质量信号(比如开关脚应用)	
		Syn	c. Mo	de	主从式同步并机设置	
			Synd	c. Run	同步时序控制设置	
		ဟ		ON	同步时序控制使能	
		ync		OFF	同步时序控制禁止	
		Sync. Mode	Para	ıllel	并联控制设置	
		ode		ON	并联控制,智能功率分配使能	
				OFF	非并联控制,智能功率分配禁止	
			Role		本机主从角色设置	

9

			Master	设定本机为主机		
			Slave	设定本机为从机		
		Slave	e ID	从机 ID 设置,仅本机被设置为从机时出现		
	Scan Slave			扫描从机,用于并机调试,仅主机有此菜单		
	Communication Baud Rate			通讯参数设置		
				波特率设置(2400~115200)		
		Com	m Parity	奇偶校验位设置(无校验/奇检验/偶检验)		
			-Point	多点通讯设置		
			ON	多点通讯使能		
			OFF	多点通讯禁止		
	Ac Display		ess Set	多点通讯时的本机地址设置		
				个性化显示设置		
		Form	nat	显示格式设置(快捷方式: <shift+▲>)</shift+▲>		
			2 items	同时显示 2 个测量项,显示字符较大		
			3 items	同时显示 3 个测量项,显示字符中等		
			6 items	同时显示 6 个测量项,显示字符较小		
		Brigh	ntness	显示亮度设置		
	Default Settings			恢复出厂默认设置		
	Yes			确认恢复为出厂默认设置		
	Device Info		fo	设备信息显示		
Sys	tem Se	t		系统设置子菜单		
	V Range			电压档位选择		
	High			电压大档设置		
	Low			电压小档设置		
	I Ran	ge		电流档位选择		
		High		电流大档设置		
		Low		电流小档设置		
S	I_pro	t		保护电流设置		
System Set	P_pro	ot		保护功率设置		
E C	Von			输入开启电压值设置		
èt	Voff			输入关闭电压值设置		
	⊅ Ra	ate		电流上升率设置		
	∖ Ra	ate		电流下降率设置		
	Source	се		被测设备类型设定		
			Source	被测设备为 CV 源		
		CC S	Source	被测设备为 CC 源		
	Auto Detect			自动匹配被测设备		
Dyn	namic Load			动态操作子菜单		
	Dyna	mic \$	Set	动态参数设置		
D,		Ia		电流低准位		
DYNA)yna	Та		低准位持续时间		
₽	Dynamic	Ib		电流高准位		
		Tb		高准位持续时间		

		/ F	Rate	电流上升率		
		\ F	Rate	电流下降率		
		Mod	е	DYNA 工作模式选择		
		7	Continuous	连续模式		
		Mode	Pulse	脉冲模式		
		е	Toggle	翻转模式		
	Ente	r Dyn	namic Mode	启动动态操作模式		
LED	Mode			LED 模拟子菜单		
	LED	Mode	e Set	LED 模拟参数设置		
		LED	Vo	工作点顺向电压		
		LED	Io	工作点顺向电流		
	Rd Coe		Coeff	Rd 系数		
) Mode			
List				List 子菜单		
	File			List 文件选择(1~8)		
	Load	l File		启动 List 操作模式		
	Edit	File		List 文件编辑子菜单		
		New	Step	List 文件新增步		
		Step	n	List 文件单步参数编辑(1~200)		
			Current	List 文件第 n 步单步拉载电流		
			SR	List 文件第 n 步电流上升率		
			Dwell	List 文件第 n 步持续时间		
			Delete	删除本步时序		
	Clea	r File	l	当前 List 文件格式化		
	Setu	p		List 工作模式选择		
		Mod	e	List 工作模式设置		
			Continuous	连续模式		
			Count	计数模式(1~9999999)		
			Step	单步模式		
		Cou	1	计数模式的重复次数,仅对计数模式生效		
Batt	ery			电池电量测试子菜单		
	Discl	harge	Set	电池放电参数设置		
₪		Mod	e	电池放电工作模式设置 CC/CP/CR		
Battery		Valu	e	电池放电带载参数值		
Ž		End	V	电池放电截止电压		
	Start	Test		启动电池电量测试模式		
Stat	atic Test			静态综合测试子菜单		
	OCP Test			过流保护测试子菜单		
			⁹ Set	过流保护测试参数设置		
<u>ဂု</u>	0		I start	起始电流设置		
S-Test	ΣP .	ОСР	I end	截止电流设置		
ż <u>s</u>	OCP Test	Ū		电流递增总步数		
_	S	Set	Steps			

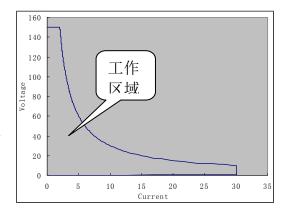
			V trig	9	确认已过流保护的触发电平
		Start	Test		开启 OCP 测试模式
-	Load Effect				负载效应测试子菜单
-		Load	Set		负载效应测试带载参数设置
	۲	L	Imin		低准位拉载电流设置
	Load	Load	Imax	(高准位拉载电流设置
	Effect	d Set	Inorr	mal	正常工作电流设置
	ect	et	Dela	у	拉载电流持续时间设置
		Start	Test		开启负载效应测试模式
Tran	sient	Test			瞬态综合测试子菜单
	Swe	ер			动态变频扫描子菜单
-		Swe	ep Se	t	动态变频扫描参数设置
			Imin		低准位负载电流设置
			Imax	(高准位负载电流设置
			Fsta	rt	起始扫描频率设置
			Fend	t	截止扫描频率设置
			Fste	p	步进频率设置
	WS		Dwe	II	单频率点持续时间设置
	Sweep	Duty			占空比设置
				Rate	电流上升率设置
				Rate	电流下降率设置
		Start	Start Test		开启 Sweep 测试模式
		Sweep Mode		de	Sweep 工作模式设置
		Aut			自动模式
			Manul		手动模式,用户可以用调节旋钮微调扫描频率
٦.	Timi	Гiming			时间量测子菜单
T-Test		Load	l Set		带载条件设置
앩			Mode	е	带载模式设置
		Value		е	带载设定值设置
		Trig.	Start		起始触发条件设置
			Sign	al	触发信号源设置
				Voltage	触发源为输入电压信号
		ℸ		Current	触发源为拉载电流信号
	Ⅎ	Trig.Start		Ext.TRIG	触发源为外部触发信号 TRIG
	Timing	Star	Edge)	触发方式设置
	Ō	t		Rise	上升沿触发有效
				Fall	下降沿触发有效
			Leve	·I	触发电平设置
		Trig.End			结束触发条件设置
			Sign	al	触发信号源设置
			Edge)	触发方式设置
			Leve	el	触发电平设置
		Start	Test		开启时间测试模式

OVP		OVP Test			过压保护测试子菜单
		Vtrig			确认已过压保护的触发电平
		Start			开启过电压保护测试模式
Auto	o Test				
	File				自动测试文件选择(1~8)
	Load	d File			启动自动测试操作模式
	Edit	File			当前自动测试文件编辑子菜单
		New	/ Step		自动测试文件新增测试步骤
		Step	n		自动测试文件第n步测试参数编辑
			Load	i	带载模式设置
	_			Mode	带载模式设置
	Edit File			Value	带载参数设置,因带载模式不同而数量不一
	Ε̈́	Step	SPE	С	比较类型设置
	ν,	рn		SPEC Type	比较数据类型,与带载模式相关。
				Max Limit	合格判断上限设置
				Min Limit	合格判断下限设置
			Dela	у	等待稳定延时时间设置
	Clear File			当前自动测试文件格式化	
	Setu	Setup			自动测试配置子菜单
A-Test		Fail Op.			单项测试不合格处理
est			Cont	inue	单步检测项判定不合格时,继续完成所有测量
		Abort		t	单步检测项判定不合格时,立刻结束自动测试
		Trigger Output			触发输出设置
			Cond	dition	触发条件设置
				Pass	当测试通过时,启动触发输出(TX 端子)
				Fail	当测试失败时,启动触发输出(TX 端子)
				End	当测试完成时,启动触发输出(TX 端子)
				Disable	禁止触发输出
			Outp	out Mode	触发输出方式设置
				Level	电平触发(低电平有效)
				Pulse	脉冲触发(低电平脉冲, 宽度 5mS)
		Auto Run			自动运行参数设置
			Volt.	Trig.	电平触发使能设置
				OFF	禁止电平触发
				ON	使能电平触发
			Vtrig		触发电平设置

第四章:面板操作

4.1. 系统设置 (System Set)

4.1.1. 负载可操作范围


负载进行动态功率分配,其工作在额定电流、额定电压及额定功率范围内,以 JT6312 为例,右图为其额定工作区域。

4.1.2. 电压电流档位选择

负载具有 2 档电压量程, 2 档电流量程, 一旦选择小档, 其相应的测量范围, 将变为大档的1/10, 而分辨率则提高到 10 倍。另外, 小档电流可设置的电流上升率上限, 为大档的1/10。

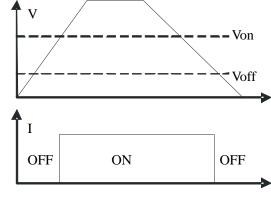
4.1.3. 保护电流设置

负载提供保护电流设置,保护电流可以为不 大于额定电流的任意值,负载保证在任何条件下, 拉载电流都不会超过保护电流值。

4.1.4. 保护功率设置

负载提供保护功率设置,保护功率可以为不大于额定功率的任意值,负载保证在任何条件下,拉载功率都不会超过保护功率值。

4.1.5. 电流变化斜率设置


负载支持可编程的电流上升率及下降率,其输入范围与额定输入电流有关,参见 2.1 章 节技术规格表。

4.1.6. Von/Voff设置

负载支持 Von/Voff 功能,其工作原理如右图 所示,当输入电压大于等于 Von 设置值时,负载 开始启动拉载,当输入电压小于等于 Voff 设置值 时,负载输入关闭,结束拉载过程。

4.1.7. 被测源类型设置

被测源有恒压源(CV Source)、恒流源(CC Source)两种,当负载进行 CP、CR 等模式带载时,将采用不同的算法,用户应正确设置被测源的类

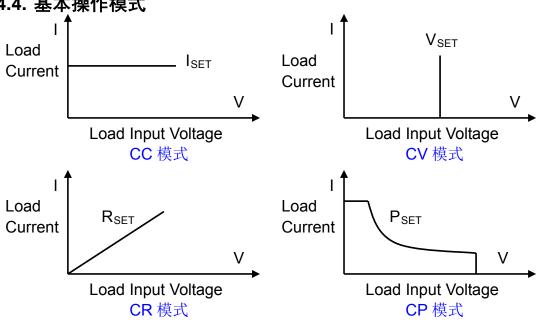
型。在CR模式下,负载支持对源类型的自动侦测与匹配,用户可将源类型设置为"Auto Detect"

4.2. 输入控制

4.2.1. 输入开关操作(On/Off)

使用<On/Off>健,可以开启或关闭输入,当输入开启时,显示屏上方状态栏显示"ON", 当输入关闭时,显示屏上方状态栏显示"OFF"。

4.2.2. 短路操作(Short)


负载提供输入端短路模拟功能,使用<Short>复合功能键,可以进入或退出短路模拟状态,当进入短路模拟状态时,显示屏下方状态栏显示"Short",当退出短路模拟状态时,负载自动切换到短路模拟前的状态。最大短路电流为负载系统设置中的保护电流值。

4.3. 触发操作(Trigger)

在特定状态下,负载需要外界提供一个触发信号,用以启动一个进程,或者完成设备间 的同步。负载提供3种方式来完成触发操作:

- 1) 前面板上的<Trigger>复合功能键。每按一次<Trigger>,启动一次触发。
- 2) 后面板上的 TRIG 端口,当 TRIG 端口被拉低时,启动一次触发。
- 3) 软件触发,每收到一次触发命令,启动一次触发。

4.4. 基本操作模式

4.4.1. 定电流模式 (CC)

定电流模式下,不管输入电压是否改变,负载都按照设定的电流进行拉载。使用<I-set> 功能键,再输入需要设定的电流值,按<Enter>健确认,即可进入定电流模式。

4.4.2. 定电压模式 (CV)

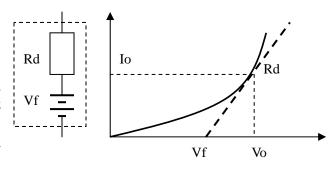
定电压模式下,负载通过快速精准的电流拉载,使输入电压维持在设定的电压上。使用 < V-set>功能键,再输入需要设定的电压值,按< Enter> 健确认,即可进入定电压模式。

4.4.3. 定功率模式(CP)

在定功率模式下,负载将以恒定功率进行拉载。使用<P-set>功能键,再输入需要设定 的功率值,按<Enter>健确认,即可进入定功率模式。

负载不仅支持 CV 源的定功率拉载,也支持 CC 源的定功率拉载,但两种类型的拉载算 法不尽相同,用户应 System 菜单中将源类型设置为 "CV Source"或 "CC Sourse",如果 用户选择为 "Auto Detect",则等效为 "CV Source"设置。

4.4.4. 定电阻模式 (CR)


在定电阻模式下,负载将被等效为一个恒定的电阻。使用<R-set>功能键,再输入需要 设定的电阻值,按<Enter>健确认,即可进入定电阻模式。

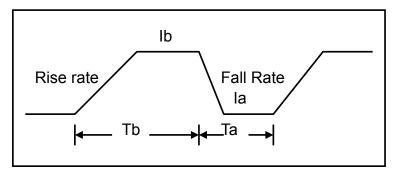
负载不仅支持 CV 源的定电阻拉载,也支持 CC 源的定电阻拉载,并能自动侦测被测源 的类型,进行算法的自动匹配,如果用户不希望有这样的匹配过程,可以在 System 菜单中 将源类型设置为 "CC Source"或 "CV Sourse",如果希望系统自动匹配源类型,则可以将 源类型设置为 "Auto Detect"。

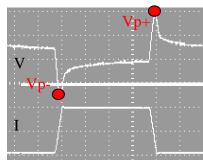
4.5.LED模式

负载(JT6310 除外)提供 LED 模拟功能, LED 等效电路如右图所示,为电阻 Rd 与电压源 Vf 的串联,其 VI 曲线等效于真实 LED 非 线性 VI 曲线在工作点(Vo, Io)处的切线。

用户需设置 Vo、Io、Rd Coeff. 共 3 个参数, 其中 Io 为被测 LED 电源的额定输出

电流; Vo 为 LED 在顺向工作电流 Io 时的顺向工作电压,其可以通过 LED 规格书中的 VI 曲线中获取,真实负载通常 n 节 LED 的串联,则 Vo 应设置为单节参数的 n 倍,也或者设定为 LED 电源输出电压范围内的任意值; Rd Coeff. 为串联等效电阻(Rd)与 LED 负载总等效电阻(Vo/Io)的比值,即 Rd Coeff. = Rd/(Vo/Io),在串联应用中,Rd Coeff. 参数只与所选择的 LED 自身 VI 曲线相关,而与串联节数无关。


因此用户可以依据 LED 电源的额定输出电流确定 Io 参数,再结合 LED 规格书上的 VI 曲线算出 Rd Coeff. 参数,然后在 LED 电源的输出电压范围内任意调节,便可针对 LED 电源进行真实 LED 模拟拉载测试。


按〈**Shift+R-set**〉键,用户可以进入 LED 模式,并设置全部 3 个设定拉载条件,而使用右上旋钮,则可以便捷的调节 Vo 参数。

LED 模式开启操	LED 模式开启操作: Menu: LED Mode: Enter LED Mode (快捷键〈Shift+R-set〉)					
LED 模式参数设	LED 模式参数设置路径: Menu: LED Mode: LED Mode Set:					
参数	说明					
LED Vo	顺向工作电流 Io 时的顺向工作电压,参见 LED 额定输出电压范围。					
LED Io	工作点顺向电流,即 LED 电源额定输出电流					
Rd Coeff.	Rd 系数,LED 自身参数,由 VI 曲线与 Io 计算获取					

4.6. 动态操作模式 (DYNA)

动态操作模式能够使负载在两种负载电流间反复切换,此功能可用来测试电源的动态特性,其原理如下图所示,负载以 Ia 载荷带载 Ta 时间间隔,在按照设定电流上升率 / Rate 爬升至 Ib 载荷,整个爬升时间与 Ib 载荷持续时间为 Tb,再以设定电流下降率 \ Rate 跌落至 Ia 载荷,以这样的方式反复切换载荷,用以检测电源的动态特性,在载荷变化的瞬间,输入电压将形成过冲与跌落,负载将会实时显示此过冲的电压峰值(Vp+),及跌落的电压谷值(Vp-)。

DYNA 模式开启: DYNA:		Enter Dynamic Mode	
DYNA 参数设置	Dynamic Set:		
参数		说明	单位

Ia	低准位拉载电流	Α
Та	低准位电流持续时间,设置范围 10uS~50S,细度 2uS	mS
Ib	高准位拉载电流	Α
Tb	高准位电流持续时间,设置范围 10uS~50S,细度 2uS	mS
	电流上升率	A/uS
∖ Rate	电流下降率	A/uS
Mode	工作模式(Continuous/ Pulse/ Toggle)	-
DYNA 工作模:	式设置路径: DYNA: Dynamic Set:Mode:	
Continuous	连续模式,负载会按照设定的电流升级斜率、持续时间,连续的	的在高低拉载
	电流之间进行切换	
Pulse	脉冲模式,每收到一次触发信号,负载电流将会按设定电流上升	率爬升到 Ib,
	并维持 Tb 时间,再按照设定电流下降率,跌落到 Ia	
Toggle	翻转模式,每收到一次触发信号,负载电流将会按设定电流上升	率爬升到 Ib,
	或按照设定电流下降率,跌落到 Ia	

4.7. 可编程序列操作模式(List)

List 功能被用于真实负载的模拟,或复杂带载波形的编辑,负载按照文件中编辑的序列,按顺序连续带载。负载支持最多 8 个文件,每个文件最多支持 200 步,每步都可设置电流变化斜率 (SR),负载也支持自动折线化编程,如果 SR 被设置为 0,则等效为,该步电流的上升或下降时间,等于设置的持续时间(Dwell)。

工力為口中引	di di Manina (Puon)		
List 文件选择:	List: File: List m $(1 \le m \le 8)$		
List 文件格式作	List 文件格式化: List: Clear File		
List 文件新建步	: List: Edit File: New Step		
List 模式开启:	List: Load File		
List 文件单步参	参数设置路径: List: Edit File: Step n: (1≤n≤200)		
参数	说明	单位	
Current	拉载电流	Α	
Dwell	持续时间,设置范围 10uS ~ 50S,细度 2uS	mS	
SR	电流变化斜率,如为0,则自动进行折线化处理	A/uS	
List 工作模式设置路径: List: Mode:			
Continuous	连续模式,负载连续顺序带载		
Count	计数模式,每收到一次触发信号,负载顺序拉载,并重复"Cou	unt"个周期,	
	结束后停止带载。Count 参数可设置范围为 1~9999999。		
Step	单步模式,每收到一次触发信号,负载按照文件中的下一步设置	置参数带载 。	

4.8. 测量项

4.8.1. 电压平均值(V)、电流平均值(I)测量

负载支持电压平均值(V)、电流平均值(I)测量并实时显示,最大测量带宽 250kHz,在大纹波条件亦可实现准确测量;负载亦提供三种滤波速度设置(参见 4.18 个性化显示设置章节),最快的滤波速度 10Hz,满足快速测量需求,最慢滤波速度为 2Hz,在恶劣条件下可以实现更好的稳定度,中间滤波速度为 5Hz。电压电流都具有大小档量测设置,在量程允许的条件下,使用小档设置,可以获取更高的测量精度。

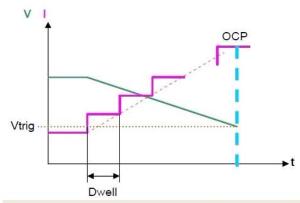
4.8.2. 电压纹波(V_{PP})、电流纹波(I_{PP})测量

负载支持电压纹波(V_{PP})、电流纹波(I_{PP})测量并实时显示。

与传统示波器加电容的测量方法不同,负载的纹波测量,在测量带宽范围内,具有良好的平坦度,因此纹波测量更加精确,具有极高的重复性。而传统测量方法,会因电解电容的原因,而导致开关纹波的衰减,并因测量线缆及电容容量的差异,而导致不同程度的衰减,不仅误差较大,而且重复性很差,用户应理解这两种测量方法的差异。

一般而言,纹波包含工频纹波与开关纹波两个不同频点的纹波, 负载的纹波测量为这两 种纹波叠加的综合影响量。

	电压纹波V _{PP}		电流组	文波IPP
量程设置	0~15V/50V	0~150V/500V	0~1.5A/3A/6A	0~15A/30A/60A
精度	0.03%+1mV/3mV	0.03%+10mV/30mV	16BIT	
测量带宽	10Hz~250kHz			


4.8.3. 电压峰值(V_{P+}/V_{P-})、电流峰值(I_{P+}/I_{P-})测量

负载支持电压峰值(V_{P+}/V_{P-})、电流峰值(I_{P+}/I_{P-})测量,并实时显示,此功能在动态带载模式下,更具特别的意义, V_{P+} 即为瞬态测试的电压过调, V_{P-} 即为瞬态测试时的电压欠调,因此此项测量最重要的意义在于,革命性的实现了瞬态测试自动测量,负载在自动测试功能(A-Test)(参见 4.11 章节)中,便可实现瞬态测试的合格判定。

4.9. 静态综合测试模式(S-Test)

4.9.1. 过流保护测试 (OCP)

负载提供过流保护测试功能,其原理如右 图所示,负载从起始电流(Istart)开始,按 照设定的步数(Steps),逐步递增电流至截止 电流(Iend),当检测到输入电平下降至触发 电平(Vtrig)时,便认为被测电源已经实现 OCP 保护,此时的电流值便是被测电源的过

流保护点(OCP),同时,负载将全程监测输入功率,自动捕捉最大功率点(Pmax)及最大功率点时的电压(V)电流值(I)。

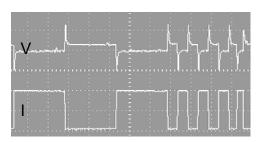
OCP 测试开启	操作: S-Test: OCP Test: Start Test	
OCP 参数设置	OCP 参数设置路径: S-Test: OCP Test: OCP Set:	
参数	说明	单位
I start	起始电流	Α
I end	截止电流	Α
Steps	电流递增总步数(1~1000)	-
Dwell	单步驻留时间(0.01~999.99)	mS
V trig	确认已过流保护的触发电平	V

4.9.2. 负载效应测试(Load Effect)

负载提供负载效应测试功能,其原理如右图所示,负载将在 3 不同载荷 (Imin,Inormal,Imax) 下进行带载,并分别持续以预设的时间 (Delay),然后记录下不同载 荷下的电压值,最后按照以下列举公司,计算出负载调整率 (Regulation)、△V 及电源内阻 (Rs)。 Vmax = Vdc@Imin Vmin = Vdc@Imax

$\triangle V = Vmax - Vmin$

Rs = $\triangle V / (Imax - Imin)$


Regulation = $\triangle V$ / Vnormal

负载效应测试	开启操作: S-Test: Load Effect: Start Test	
负载效应测试	参数设置路径: S-Test: Load Effect: Load Set:	
参数	说明	单位
Imin	低准位拉载电流	Α
Imax	高准位拉载电流	А
Inormal	正常工作电流	Α
Delay	每步拉载电流持续时间	S

4.10. 瞬态综合测试模式(T-Test)

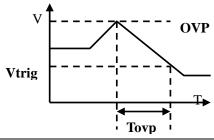
4.10.1. 动态变频扫描(Sweep)

负载提供动态变频扫描功能,用以捕捉被测电源最恶劣情况下的 Vp+及 Vp-。负载按照预设电流上升率及电流下降率,在两个载荷间反复切换,类似于 DYNA 模式,所不同的是,每个电流准位的持续时间将由扫描频率及占空比(Duty)决定,同时,扫描频率也将从起始扫描频率(Fstart)逐步递增到截止扫描频率(Fend),步进频率为(Fstep),每个频率点扫描持续时间为

(Dwell),在扫描过程中,输入电压将伴随电流的瞬变,产生过冲与跌落,负载将实时显示过冲时的电压峰值(Vp+)、及跌落时的电压谷值(Vp-),最后显示 Vp+最大值及 Vp-最小值,及各自发生的频率点。

Sweep 测试开启操作: T-Test: Sweep: Start Test			
Sweep 测试参	Sweep 测试参数设置路径: T-Test: Sweep: Sweep Set:		
参数	说明	单位	
Imin	低准位负载电流	Α	
Imax	高准位负载电流	Α	
Fstart	起始扫描频率,0.01Hz~50Khz	Hz	
Fend	截止扫描频率,0.01Hz~50Khz	Hz	
Fstep	步进频率,0.01Hz~50Khz	Hz	
Dwell	单频率点持续时间,0.001S~99.999S	s	
Duty	占空比,1%~99%	%	
	电流上升率	A/us	
	电流下降率	A/us	
Sweep 工作模式参数设置路径: T-Test: Sweep: Sweep Mode:			
Auto	自动模式	-	
Manul	手动模式,可用调节旋钮微调扫描频率,步进量为 Fstep	-	

4.10.2. 时间量测(Timing)


负载提供时间量测功能,精度 0.1mS,负载在预定带载条件下,自动捕捉 2 个触发信号,并计算其时间间隔。测试完成后,负载会显示两次触发的时间间隔 (Time)。

时间量测开启操作	F: T-Test: Timing: Start Test
时间量测带载条件	‡参数设置路径: T-Test: Timing: Load Set
参数	说明

Mode	带载工作模式(选项: CC/CV/CP/CR/OFF)
Value	负载设定值
起始触发条件参	数设置路径: T-Test: Timing: Trig.Start
结束触发条件参	数设置路径: T-Test: Timing: Trig.End
Signal	触发信号源(选项: TRI / Voltage / Current)
Edge	触发方式选择(选项:上升沿(Rise)/下降沿(Fall))
Level	触发电平

4.10.3. 过电压保护测试(OVP)

负载提供过电压保护(OVP)测试功能,负载捕捉输入电压峰值点及下降沿,并在下降沿时刻的预设电平(Vtrig)处触发,则此电压峰值便是被测电源的过压保护点(OVP),而峰值时刻到触发时刻的时间间隔,便是被测电源的 OVP 响应时间(Tovp),Tovp 量测精度 2uS。

过压保护测试开启操作: T-Test: OVP Test: Start Test	
过压保护测试参	数设置路径: T-Test: OVP Test:
参数 说明	
Vtrig	确认保护的触发电平,应比被测电源过压保护之后的输出电平稍高

4.11. 自动测试模式(A-Test)

自动测试功能被用于生产线的产品检验,负载按照文件中编辑的步骤,按顺序进行带载及测试,自动判定合格与否。负载支持最多 8 个文件,每个文件最多支持 50 步测试,每步测试可以设置带载条件(Load)、检测类型(SPEC)及延时时间(Delay)。其中延时时间可以设置为等待触发信号,也可以是范围为 0.1S~99S 的任一时间。

带载条件支持多种工作模式(Mode),不同工作模式支持的检测类型(SPEC)也不尽相同,详见下表描述,各模式下的带载参数也不尽相同,参见各模式相应章节介绍。

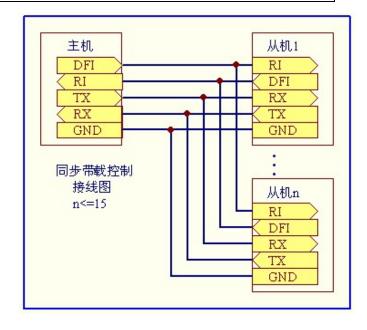
A-Test 文件选	择: A-Test: File: List m (1 ≤ m ≤ 8)
A-Test 文件格式化: A-Test: Clear File	
A-Test 文件新	建序列: A-Test: Edit File: New Step
A-Test 模式开	启: A-Test: Load File
工作模式参数	设置路径: A-Test: Edit File: Step n: Load: Mode:
参数	说明
CC	恒流模式
CV	恒压模式
CP	恒功率模式
CR	恒电阻模式
DYNA	动态带载模式
OCP	OCP 测试模式
Sweep	动态扫描模式
Load Effect	负载效应测试模式
LED	LED 模式
检测项参数设置路径: A-Test: Edit File: Step n: SPEC:	

	D +b -b - + - 0.0 0 0.0 0.0 1.5 7.4 # 0.1 4 1.4 4
Current	拉载电流,在 CC, CV, CP, CR, LED 五种模式中有效
Voltage	输入电压,在 CC, CV, CP, CR, LED 五种模式中有效
Power	拉载功率,在 CC, CV, CP, CR, LED 五种模式中有效
Resistance	等效电阻,在 CC, CV, CP, CR, LED 五种模式中有效
Vpp	纹波电压,在 CC, CV, CP, CR, DYNA, LED 六种模式中有效
Ipp	纹波电流,在 CC, CV, CP, CR, DYNA, LED 六种模式中有效
Vp+	电压峰值,在 CC, CV, CP, CR, DYNA, Sweep, LED 六种模式中有效
Vp-	电压谷值,在 CC, CV, CP, CR, DYNA, Sweep, LED 六种模式中有效
Ip+	电流峰值,在 CC, CV, CP, CR, DYNA, LED 六种模式中有效
Ip-	电流谷值,在 CC, CV, CP, CR, DYNA, LED 六种模式中有效
OCP	过流保护点,在 OCP 模式中有效
Pmax	最大输出功率点,在 OCP 模式中有效
Reg.	负载调整率,在 Load Effect 模式中有效
ΔV	Imin,Imax 两种载荷下的电压差,在 Load Effect 模式中有效
Rs	电源串联内阻,在 Load Effect 模式中有效
A-Test 不合格	处理流程设置路径: A-Test: Setup: Fail Op.:
Continue	当单步检测项判定不合格时,继续完成所有测量
Abort	当单步检测项判定不合格时,立刻结束自动测试
A-Test 触发条	件参数设置路径: A-Test: Setup: Trigger Output: Condition:
Pass	当测试通过时,启动触发输出(TX 端子)
Fail	当测试失败时,启动触发输出(TX 端子)
End	当测试完成时,启动触发输出(TX 端子)
Disable	禁止触发输出
A-Test 触发输	出方式设置路径: A-Test: Setup: Trigger Output: Mode:
Level	电平触发(低电平有效)
Pulse	脉冲触发(低电平脉冲,宽度 5mS)
A-Test 触发输	出方式设置路径: A-Test: Setup: AutoRun: Volt.Trig.:
OFF	禁止自动运行
ON	使能电平触发的自动运行模式

4.12. 电池电量测试模式(Battery)

负载提供电池电量测试功能,放电条件支持 CC、CP 及 CR 三种模式,启动测试后,负载实时显示放电持续时间、累计 mAH 电池容量和 WH 电池容量,在电池电压跌落到截至电压时,负载完成测试并停止带载。

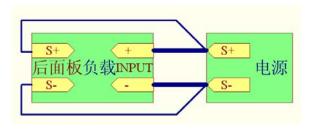
电池电量测试开	启操作: Battery: Start Test
电池电量测试参	数设置路径: Battery : Discharge Set:
参数	说明
Mode	放电工作模式,支持 CC、CP 及 CR 三种模式
Value	带载参数,CC 模式为电流,CP 模式为功率,CR 模式为电阻


4.13. 同步主从式并机时序控制

负载提供主从式同步并机时序控制,用于多台负载的同步带载,或多台负载的并联应用。 一旦使能同步时序控制,负载便进入主从模式,此时,系统最多支持16台负载的同步控制, 其中只能有一台主机,其他负载必须设置为从机,从机分配地址不得重复,从机合法地址范围为 1~15。而如果使能并联控制模式,则负载将自动进行智能功率分配,所有从机将失去独立操作能力。

当完成同步并机连线及参数设置后,应进行从机扫描操作,正式进入主从式控制状态, 主机在重新上电之后,会自动进行一次从机扫描操作,所以,如果在所有从机先开机的情况 下,最后打开主机电源,就不需要手动进行从机扫描操作。

从机扫描操作:	Menu: Config: Sync. Mode: Scan Slave
从机地址设置操	作: Menu: Config: Sync. Mode: Address
同步时序控制参	数设置路径: Menu: Config: Sync. Mode:
参数	说明
Sync. Run	同步时序控制,ON 为使能,OFF 为禁止
Parallel	并联控制,ON 为使能智能功率分配,OFF 为禁止智能功率分配
Role	本机主从角色设置,Master 为主机,Slave 为从机


工作模式	参数	状态
单机模式	Sync. Run	0FF
独立多机	Sync. Run	ON
同步带载	Parallel	0FF
主机设置	Role	Master
独立多机	Sync. Run	ON
同步带载	Parallel	0FF
从机设置	Role	Slave
并联多机	Sync. Run	ON
同步带载	Parallel	ON
主机设置	Role	Master
并联多机	Sync. Run	ON
同步带载	Parallel	ON
从机设置	Role	Slave

4.14. 远端补偿

电流在连接线上会产生压降,为减小电压测量误差,负载提供远端补偿功能,连接方式如右图。

远端补偿的使能与否必须与接线方式严格 匹配,如果不匹配,将会失去对电压的监测能力, 一旦使能远端补偿后,显示屏上方状态栏将会显 示"Sense"。

4.15. 保护功能

4.15.1. 过压保护

负载提供过压保护功能,当输入电压高于额定电压的 105%时,负载将立即 OFF,并显示 "OVER VOLT",持续鸣叫,直至过压条件解除。

4.15.2. 过流保护

负载提供过流保护功能,当输入电流大于设定保护电流时,负载将显示"OC",并鸣叫一声,同时,将强制进行 CC 模式下设定保护电流值带载。

4.15.3. 过功率保护

负载提供过功率保护功能,当输入功率大于设定保护功率时,负载将显示 "OP",并鸣叫一声,同时,将强制进行 CP 模式下设定保护功率值带载。

4.15.4. 过热保护

负载实时检测内部功率部件的工作温度,一旦此温度上升到 80℃,负载将显示"OVER TEMP",并持续鸣叫,同时,将强制关闭输入,此时,用户可以按任意键解除告警信息。

4.15.5. 输入极性反接保护

当输入极性反接时,将产生短路效果,负载将提示"LOC RV",持续鸣叫,直到输入极性正常。当负载使能远端补偿功能时,如果远端输入端子极性反接,负载将提示"RMT RV",持续鸣叫,直到远端输入极性正常。

4.16. 存取操作

负载提供 20 组全局数据的快捷存取功能,包括所有系统设置参数、基本工作模式(CC/CV/CP/CR)下的设置参数。

存储操作: Store n(1~20) 读取操作: Recall n(1~20)

4.17. 调节旋钮的使用

负载提供一带按键的调节旋钮,在基本工作模式下,编码器用于设定值的微调,编码器按键用于微调细度的调节。在菜单操作模式下,可使用编码器对菜单进行快速选择,此时,编码器按键等效于 Enter 健。用户也可以在 Config 菜单中禁止调节旋钮微调设定值。

4.18. 个性化显示设置

负载支持 3 种显示格式,支持显示亮度调节,亮度调节范围 10~100,其中 10 最暗,100 最亮。负载还支持测量滤波速度调节,以满足不同状况下得需要。

显示亮度调节操作	: Menu: Config: Display: Brightness			
显示格式参数设置	战路径: Menu: Config: Display: Format: (快捷 <shift+▲>)</shift+▲>			
参数	描述			
2 items	同时显示 2 个测量项,显示字符较大			
3 items	同时显示3个测量项,显示字符中等			
6 items	同时显示6个测量项,显示字符较小			
滤波速度调节参数	滤波速度调节参数设置: Menu: Config: Measure Rate: (快捷 <shift+▼>)</shift+▼>			
参数	描述			
Fast	数据刷新频率 10Hz, 速度快, 稳定性差			
Medium	数据刷新频率 5Hz,速度与稳定性折中			
Slow	数据刷新频率 2Hz,速度慢,稳定性好			

第五章:通信协议(SCPI)

5.1. SCPI命令概述

协议所有的下行编程数据及上行返回数据,都是 ASCII 字符,以换行符<NL>(0x0A)来通知一帧数据的结束。协议支持以下几种数据格式:

- 1) <NR1>,整数,例如**285**
- 2) <NR2>, 含有小数点的数字, 例如0.285
- 3) <NR3>, 用科学计数法表示的数字, 例如2.85E+2
- 4) <Nrf>, 扩展格式,包括<NR1>,<NR2>,<NR3>,例如285、0.285、2.85E2。.
- 5) <Nrf+>,包括<Nrf>,MIN, MAX,例如285、0.285、2.85E2、MIN、MAX。其中MIN表示负载可以设定的最小值,MAX表示负载可以设定的最大值。
 - 6) <Bool>, 比如 **0 | 1** 或 **ON | OFF**。.

数据的单位应当跟随在数据之后,如果该单位为下表中相应数据类型的默认单位,则单位信息可以省略。

数据类型	默认单位	支持单位
电压	V	mV
电流	А	mA
功率	W	mW
电阻	ohm	
压摆率	A/uS	
时间	S	mS

在 SCPI 协议命令表达中,使用了一些助记符号,这些符号仅仅表达如下表所描述的意义,不包含在真实的命令之中。

A 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
助记符	意义
< >	尖括号内为参数缩写
	竖线分隔可替代的参数
[]	方括号内为可选项目

5.2. 寄存器说明

协议支持如下4组寄存器,

1) 可查询状态寄存器组(Questionable Status)

可查询状态寄存器组,共有 3 个 16 位寄存器,依次为状态寄存器、事件寄存器及使能寄存器,当状态寄存器相应位发生改变,事件寄存器对应位将置位,如果使能寄存器的相应位置位,则产生一次事件(状态字节寄存器的QUES置位)。当执行一次事件寄存器读取操作之后,事件寄存器将会自动清零。状态寄存器定义如下:

位	名称	意义
Bit0	VF	
Bit1	OC	负载处于过电流保护状态
Bit3	OP	负载处于过功率保护状态
Bit4	OT	负载处于过热保护状态
Bit8	RRV	远端输入极性反接
Bit11	UNR	
Bit12	LRV	本地输入极性反接

Bit13	OV	负载处于过电压保护状态

2) 标准事件寄存器组(Standard Event Status)

标准事件寄存器组,共有 2 个 16 位寄存器,依次为事件寄存器及使能寄存器,当事件发生时,如果使能寄存器的相应位置位,则产生一次事件(状态字节寄存器的 ESB 置位)。当执行一次事件寄存器读取操作之后,事件寄存器将会自动清零。事件寄存器定义如下:

位	名称	意义
Bit0	OPC	操作完成
Bit2	QYE	查询错误
Bit3	DDE	设备故障
Bit4	EXE	执行错误
Bit5	CME	命令错误
Bit7	PON	负载重新上电

3) 操作状态寄存器组(Operation Status)

操作状态寄存器组,共有 3 个 16 位寄存器,依次为状态寄存器、事件寄存器及使能寄存器,当状态寄存器相应位发生改变,事件寄存器对应位将置位,如果使能寄存器的相应位置位,则产生一次事件(状态字节寄存器的 OPER 置位)。当执行一次事件寄存器读取操作之后,事件寄存器将会自动清零。状态寄存器定义如下:

位	名称	意义
Bit0	CAL	负载处于标定状态
Bit5	WTG	负载处于等待触发状态

4) 状态位组寄存器组(Status Byte)

状态位组寄存器组,共有 2 个 8 位寄存器,依次为事件寄存器及使能寄存器,当事件发生时,如果使能寄存器的相应位置位,则产生一次事件(状态字节寄存器的RQS置位)。当执行一次事件寄存器读取操作之后,状态位组寄存器将会自动清零。事件器定义如下:

位	名称	意义
Bit3	QUES	如果有使能的可查询状态事件,置位
Bit4	MAV	如果输出队列有数据,置位
Bit5	ESB	如果有使能的标准事件,置位
Bit6	RQS	
Bit7	OPER	

5.3. 共同命令

*CLS 此命令清除下列寄存器:

标准事件寄存器 (Standard Event Status)

查询事件寄存器(Questionable Status)

操作状态寄存器(Operation Status)

位组寄存器(Status Byte)

错误代码

命令语法 *CLS

*ESE 此命令编辑标准事件使能寄存器的值。

编程参数决定了标准事件寄存器中哪些位为1时将会引起状态位组寄存器中ESB位置1。

命令语法*ESE <NRf>参数0~255上电值参考*PSC命令例子*ESE 128查询语法*ESE?返回参数<NR1>

***ESR?** 此命令可以用来读取标准事件寄存器的值。在该命令被执行后,标准事件寄存器的值被清零。标准事件寄存器的位定义与标准事件使能寄存器的位定义相同。

查询语法 *ESR? 返回参数 〈NR1〉

*IDN? 此命令查询仪器相关信息。它返回的参数包含了四个被逗号分开的段。

查询语法 *IDN?

返回参数 <AARD>段 描述

JARTUL 制造商 JT632x 产品型号 xxxxxxxxx 序列号 x.xx.xx 软件版本号

例: JARTUL, JT6321, xxxxxxxxx, A. 01. 02

*OPC 当此命令之前的所有命令被执行完成后,标准事件寄存器的OPC位被置1。

命令语法 *OPC

查询语法 *OPC? 返回参数 <NR1>

*PSC 此命令用来控制当电源重上电时是否会产生一个服务请求。

1 or **ON** 当电源上电时,状态位组使能寄存器,操作状态使能寄存器,查询事件使能寄存器及标准事件使能寄存器的值被清零。

0 or **OFF** 状态位组使能寄存器,操作状态使能寄存器,查询事件使能寄存器及标准 事件使能寄存器的值被储存在非易失性存储器中,供重上电时取出使用。

命令语法 *PSC <bool> 参数 0|1|ON|OFF

查询语法 *PSC? 返回参数 0|1

*RCL 此命令将从指定的储存区域中恢复电源的设定值。

命令语法 *RCL <NR1> 参数 1~20

例子 *RCL 3

*RST 此命令复位负载到工厂设定状态。

命令语法 *RST **参数** 无

*SAV 此命令将保存仪器的当前设定值到指定的存储区域中。

命令语法 *SAV <NR1> **参数 1~20**

例子 *SAV 3

*SRE 此命令编辑了状态位组使能寄存器的值。

编程参数决定了状态位组寄存器中哪些位为1时将会引起状态位组寄存器中RQS位置1。状态位组使能寄存器的位定义与状态位组寄存器的位定义相同。

命令语法*SRE <NRf>参数0~255上电值参考*PSC命令例子*SRE 128查询语法*SRE?返回参数<NR1>

*STB? 此命令可以用来读取状态位组寄存器的值。

在该命令被执行后,状态位组寄存器的值被清零。

查询语法 *STB? 返回参数 <NR1>

*TST? 此命令使仪器做一次自检并报告错误

5.4. 必备命令

5.4.1. 系统命令

SYSTem:ERRor? 此命令用于错误信息查询。

查询语法 SYSTem:ERRor[:NEXT]?

返回参数 <NR1>, <SRD> **例子** SYST:ERR? **SYSTem:VERSion?** 此命令查询负载遵循的 SCPI 版本号,格式为 YYYY.V

查询语法 SYSTem:VERSion?

返回参数 <NR1>, <SRD> 例子 SYST:VERS?

SYSTem:SENSe 此命令用于远端补偿功能的开启与关闭。

命令语法 SYSTem:SENSe[:STATe] <bool>

参数 0 | 1 | OFF | ON 复位值 OFF

例子 SYST:SENS ON

查询语法 SYSTem:SENSe[:STATe]?

返回参数 0 | 1

SYSTem:BEEPer:STATe 此命令用于蜂鸣器的使能与禁止。

命令语法 SYSTem:BEEPer:STATe <bool>

参数 0 | 1 | OFF | ON 复位值 OFF

例子 SYST:BEEP:STAT ON

查询语法 SYSTem:BEEPer:STATe? 返回参数 0 | 1

SYSTem:LOCal 进入本地模式,仪器面板的所有按键都可以操作。

命令语法 SYSTem:LOCal 例子 SYST:LOC

SYSTem:REMote 进入远程模式。

除了 Shift-Local 以外,前面板的所有按键都被禁止;按 Shift-Local,可以退出这个模式

命令语法 SYSTem:REMote 例子 SYST:REM

SYSTem:RWLOCK 进入远程模式,前面板的所有按键都被禁止。

命令语法 SYSTem:RWLock 例子 SYST:RWL

5.4.2. 状态命令

STATus:QUEStionalbe? 此命令用来读取查询寄存器组事件寄存器值。

查询语法 STATus:QUEStionable[:EVENt]?

例子 STAT:QUES:EVEN? 返回参数 <NR1>

STATus:QUEStionalbe:CONDition? 此命令用来读取查询寄存器组状态寄存器值。

查询语法 STATus:QUEStionable:CONDition?

例子 STAT:QUES:COND? 返回参数 <NR1>

STATus:QUEStionalbe:ENABle 此命令用来设置/读取查询寄存器组使能寄存器值。

命令语法 STATus:QUEStionable <NRf+>

参数 0~32767 例子 STAT:QUES:ENAB 32

查询语法 STATus:QUEStionalbe:ENABle?

返回参数 <NR1>

STATus:OPERation? 此命令用来读取操作状态寄存器组事件寄存器值。

查询语法 STATus:OPERation[:EVENt]?

例子 STAT:OPER:EVEN? 返回参数 <NR1>

STATus: OPERation:CONDition? 此命令用来读取操作状态寄存器组状态寄存器值。

查询语法 STATus:OPERation:CONDition?

例子 STAT:OPER:COND? 返回参数 <NR1>

STATus: OPERation: ENABle 此命令用来设置/读取操作状态寄存器组使能寄存器值。

命令语法 STATus:OPERation <NRf+>

参数 0~32767 例子 STAT:OPER:ENAB 32

查询语法 STATus:OPERation:ENABle?

返回参数 <NR1>

5.5. 输入设置命令

5.5.1. 输入控制

[SOURce:]INPut 此命令用于输入开启或关闭。

命令语法 [SOURce:]INPut[:STATe] <bool>

参数 0 | 1 | OFF | ON 复位值 OFF

例子 INP 1

查询语法 INPut[:STATe]? 返回参数 0 | 1

[SOURce:]INPut:SHORt 此命令用于输入短路状态的使能或禁止。

命令语法 [SOURce:]INPut:SHORt <bool>

参数 0 | 1 | OFF | ON 复位值 OFF

例子 INP:SHOR 1

查询语法 INPut:SHORt? 返回参数 0 | 1

5.5.2. 系统参数设定

[SOURce:]CURRent:RANGe 此命令用于设置电流档位。

当设置的参数落在小档范围内时,则选择电流小档,否则选择电流大档。

命令语法 [SOURce:]CURRent:RANGe <NRf+>

参数 0 ~ MAX | MINimum | MAXimum

单位 A

复位值MAXimum (大量程)例子CURR:RANGE MIN

查询语法 [SOURce:]CURRent:RANGe?

返回参数 <NR2>

[SOURce:]VOLTage:RANGe 此命令用于设置电压档位.

当设置的参数落在小档范围内时,则选择电压小档,否则选择电压大档。

命令语法 [SOURce:]VOLTage:RANGe <NRf+>

参数 0 ~ MAX | MINimum | MAXimum

单位 V

复位值 MAXimum (大量程)

例子 SOUR:VOLT:RANGE MIN 查询语法 [SOURce:]VOLTage:RANGe?

返回参数 <NR2>

[SOURce:]CURRent:SLEW 此命令用于设置相同的电流上升率及电流下降率。

命令语法 [SOURce:]CURRent:SLEW[:BOTH] <NRf+>

参数 MIN ~ MAX | MINimum | MAXimum

单位 A/uS 复位值 MAXimum 例子 CURR:SLEW 3 或 CURR:SLEW 3A/uS

查询语法 [SOURce:]CURRent:SLEW?

返回参数 <NR2>

[SOURce:]CURRent:SLEW:RISE 此命令用于设置电流上升率。

命令语法 [SOURce:]CURRent:SLEW:RISE <NRf+>

参数 MIN ~ MAX | MINimum | MAXimum

单位 A/uS

复位值 MAXimum

例子 CURR:SLEW:RISE 3

查询语法 [SOURce:]CURRent:SLEW:RISE?

返回参数 <NR2>

[SOURce:]CURRent:SLEW:FALL 此命令用于设置电流下降率。

命令语法 [SOURce:]CURRent:SLEW:RISE <NRf+>

参数 MIN ~ MAX | MINimum | MAXimum

单位 A/uS

复位值 MAXimum

例子 CURR:SLEW:RISE 3

查询语法 [SOURce:]CURRent:SLEW:RISE?

返回参数 <NR2>

[SOURce:]CURRent:PROTection 此命令用于设置电流保护值。

命令语法 [SOURce:]CURRent:PROTection[:LEVel] <NRf+>

参数 0~MAX | MINimum | MAXimum

单位 A

复位值 MAXimum 例子 CURR:PROT 3

查询语法 [SOURce:]CURRent:PROTection[:LEVel]?

返回参数 <NR2>

[SOURce:]POWer:PROTection 此命令用于设置功率保护值。

命令语法 [SOURce:]POWer:PROTection[:LEVel] <NRf+>

参数 0~MAX | MINimum | MAXimum

单位 W

复位值 MAXimum (大量程) 例子 POW:PROT 100

查询语法 [SOURce:] POWer:PROTection[:LEVel]?

返回参数 <NR2>

[SOURce:]VOLTage:[LEVel:]ON 此命令用于设置负载的开始带载电压值(Von)

命令语法 [SOURce:]Voltage:[LEVel:]ON <NRf+>

参数 0 ~ MAX | MINimum | MAXimum

单位 V **复位值** 1

例子 VOLT:ON 3

查询语法 [SOURce:] VOLTage:[LEVel:]ON?

返回参数 <NR2>

[SOURce:]VOLTage:[LEVel:]OFF 此命令用于设置负载的开始卸载电压值(Voff)

命令语法 [SOURce:]Voltage:[LEVel:]OFF <NRf+>

参数 0 ~ MAX | MINimum | MAXimum

 单位
 V

 复位值
 0.5

例子 VOLT:OFF 2

查询语法 [SOURce:] VOLTage:[LEVel:]OFF?

返回参数 <NR2>

5.5.3. 工作模式控制

[SOURce:]FUNCtion

[SOURce:]MODE 这 2 条命令等效,用于选择负载的输入模式。

命令语法 [SOURce:]FUNCtion <function> [SOURce:]MODE <function>

参数	工作模式
CURRent	定电流操作模式
VOLTage	定电压操作作模式
POWer	定功率操作模式
RESistance	定电阻操作模式
DYNamic	动态操作模式
LED	LED 模式

复位值 CURRent MODE RES

查询语法 [SOURce:]FUNCtion? [SOURce:]MODE?

返回参数 <CRD>

5.5.4. 工作参数设定

[SOURce:]CURRent 此命令用于设置 CC 模式下的设定电流。

命令语法 [SOURce:]CURRent[:LEVel][:IMMediate][:AMPLitude] <NRf+>

参数 0~MAX | MINimum | MAXimum

单位 A

复位值 MINimum 例子 CURR 5

查询语法 [SOURce:]CURRent[:LEVel][:IMMediate][:AMPLitude]?

返回参数 <NR2>

[SOURce:]VOLTage 此命令用于设置 CV 模式下的设定电压。

命令语法 [SOURce:]VOLTage[:LEVel][:IMMediate][:AMPLitude] <NRf+>

参数 0~MAX | MINimum | MAXimum

单位 V

复位值 MAXimum 例子 VOLT 5

查询语法 [SOURce:]VOLTage[:LEVel][:IMMediate][:AMPLitude]?

返回参数 <NR2>

[SOURce:]POWer 此命令用于设置 CP 模式下的设定功率。

命令语法 [SOURce:]POWer[:LEVel][:IMMediate][:AMPLitude] <NRf+>

参数 0~MAX | MINimum | MAXimum

单位 W

复位值 MINimum 例子 POW 10

查询语法 [SOURce:]POWer[:LEVel][:IMMediate][:AMPLitude]?

返回参数 <NR2>

[SOURce:]RESistance 此命令用于设置 CR 模式下的设定电阻。

命令语法 [SOURce:]RESistance[:LEVel][:IMMediate][:AMPLitude] <NRf+>

参数 0~MAX | MINimum | MAXimum

单位 ohm

复位值 MAXimum 例子 RES 5

查询语法 [SOURce:]RESistance[:LEVel][:IMMediate][:AMPLitude]?

返回参数 <NR2>

[SOURce:]DYNamic:HIGH 此命令用于设置动态模式的高准位拉载电流。

命令语法 [SOURce:]DYNamic:HIGH[:LEVel] <NRf+>

参数 0~ MAX | MINimum | MAXimum

单位 A 复位值 0

例子 DYN:HIGH 10

查询语法 [SOURce:] DYNamic:HIGH[:LEVel]?

返回参数 < NR2>

[SOURce:]DYNamic:HIGH:DWELI

此命令用于设置动态模式下的高准位拉载电流持续时间。

命令语法 [SOURce:]DYNamic:HIGH:DWELI <NRf+>

参数 0.00001 ~ 50 | MINimum | MAXimum

单位 s

复位值 0.00001

例子 DYN:HIGH:DWELL 0.01

查询语法 [SOURce:]DYNamic:HIGH:DWELI?

返回参数 < NR2>

[SOURce:]DYNamic:LOW 此命令用于设置动态模式的低准位拉载电流。

命令语法 [SOURce:]DYNamic:LOW[:LEVel] <NRf+>

参数 0 ~ MAX| MINimum | MAXimum

 单位
 A

 复位值
 0

例子 DYN:LOW 1

查询语法 [SOURce:]DYNamic:LOW[:LEVel]?

返回参数 < NR2>

[SOURce:]DYNamic:LOW:DWELI

此命令用于设置动态模式下的低准位拉载电流持续时间。

命令语法 [SOURce:]DYNamic:LOW:DWELI <NRf+> 参数 0.00002 ~ 0.999 | MINimum | MAXimum

单位 s

复位值 0.00002

例子 DYN:LOW:DWEL 10

查询语法 [SOURce:]DYNamic:LOW:DWELI?

返回参数 < NR2>

[SOURce:]DYNamic:SLEW 此命令用于设置动态模式的电流斜率。

命令语法 [SOURce:]DYNamic:SLEW <NRf+> 参数 MIN ~ MAX | MINimum | MAXimum

单位 A/uS 复位值 MAX

例子 DYN:SLEW 3

查询语法 [SOURce:]DYNamic:SLEW?

返回参数 < NR2>

[SOURce:]DYNamic:SLEW:RISE 此命令用于设置动态模式电流上升率。

命令语法 [SOURce:]DYNamic:SLEW:RISE <NRf+>

参数 MIN ~ MAX | MINimum | MAXimum

单位 A/uS 复位值 MAX

例子 DYN:SLEW 3

查询语法 [SOURce:]DYNamic:SLEW:RISE?

返回参数 < NR2>

[SOURce:]DYNamic:SLEW:FALL 此命令用于设置动态模式电流下降率。

命令语法 [SOURce:]DYNamic:SLEW:FALL <NRf+>

参数 MIN ~ MAX | MINimum | MAXimum

单位 A/uS 复位值 MAX

例子 DYN:SLEW:FALL 3

查询语法 [SOURce:]DYNamic:SLEW:FALL?

返回参数 < NR2>

[SOURce:]DYNamic:MODE 此命令用于设置动态模式下的工作模式。

命令语法 [SOURce:]DYNamic:MODE <mode> 参数 CONTinuous | PULSe | TOGGle

复位值 CONTinuous

例子 DYN:MODE PULS

查询语法 [SOURce:]DYNamic:MODE?

返回参数 <CRD>

LED:VOLTage 此命令用于设置 LED Vo

命令语法 LED:VOLTage <Nrf+>

参数 0.001~MAX 例子 LED:VOLT 18 查询语法 LED:VOLT? 返回 <NR2>

LED:CURRent 此命令用于设置 LED Io

命令语法 LED:CURRent < Nrf+>

参数 0~MAX

例子 LED:CURR 0.35 查询语法 LED:CURR? 返回 <NR2>

LED:RCOeff 此命令用于设置 LED Rd Coeff.

命令语法 LED:RCOeff <Nrf+>

参数 0.001~1

例子 LED:RCO 0.2 查询语法 LED:RCO? 返回 <NR2>

5.6. 测量命令

MEASure:VOLTage? 此命令用于读取电压平均值。

命令语法 MEASure[:SCALar]:VOLTage[:DC]?

例子 MEAS:VOLT?

返回参数 <NR2>

MEASure:VOLTage:MAXimum? 此命令用于读取电压峰值 Vp+。

命令语法 MEASure[:SCALar]:VOLTage:MAXimum?

例子 MEAS:VOLT:MAX?

返回参数 <NR2>

MEASure:VOLTage:MINimum? 此命令用于读取电压最小值 Vp-。

命令语法 MEASure[:SCALar]:VOLTage:MINimum?

例子 MEAS:VOLT:MIN?

返回参数 <NR2>

MEASure:VOLTage:PTPeak? 此命令用于读取电压峰峰值 Vpp。

命令语法 MEASure[:SCALar]:VOLTage:PTPeak?

例子 MEAS:VOLT:PTP?

返回参数 <NR2>

MEASure:CURRent? 此命令用于读取电流平均值。

命令语法 MEASure [:SCALar]:CURRent[:DC]?

例子 MEAS:CURR?

返回参数 <NR2>

MEASure: CURRent:MAXimum? 此命令用于读取电流峰值 Vp+。

命令语法 MEASure[:SCALar]:CURRent:MAXimum?

例子 MEAS:CURR:MAX?

返回参数 <NR2>

MEASure: CURRent:MINimum? 此命令用于读取电流最小值 Vp-。

命令语法 MEASure[:SCALar]:CURRent:MINimum?

例子 MEAS:CURR:MIN?

返回参数 <NR2>

MEASure:CURRent:PTPeak? 此命令用于读取电流峰峰值 lpp

命令语法 MEASure[:SCALar]:CURRent:PTPeak?

例子 MEAS:CURR:PTP?

返回参数 <NR2>

MEASure:POWer? 此命令用于读取功率平均值。

命令语法 MEASure [:SCALar]:POWer[:DC]?

例子 MEAS:POWer?

返回参数 <NR2>

MEASure:RESistance? 此命令用于读取等效阻抗。

命令语法 MEAS[:SCALar]:RESistance[:DC]?

例子 MEAS:RESistance?

返回参数 <NR2>

5.7. OCP测试命令

OCP[:STATe] 此命令用于启动或停止 OCP 测试

命令语法 OCP[:STATe] <bool>

参数 0 | 1 | OFF | ON

例子 OCP ON

查询语法 OCP[:STATe]?

返回 0|1

OCP:ISTart 此命令用于设置 OCP 起始电流

命令语法 OCP:ISTart <NRf+>

参数 0~MAX

单位 A

例子 OCP:IST 3 查询语法 OCP:ISTart? 返回 < NR2>

OCP:IEND 此命令用于设置 OCP 截止电流

命令语法 OCP:IEND <NRf+>

参数 0~MAX

单位 A

例子 OCP:IEND 6 查询语法 OCP:IEND? 返回 < NR2>

OCP:STEP 此命令用于设置 OCP 电流上升步数

命令语法 OCP:STEP <NR1>

参数 1~1000

例子 OCP:STEP 500 查询语法 OCP:STEP?

返回 <NR2>

OCP:DWELI 此命令用于设置 OCP 单步驻留时间

命令语法 OCP:DWELI <NRf+> 参数 0.00001 ~ 0.99999

单位 S

例子 OCP:DWEL 0.01 或 OCP:DWEL 10ms

查询语法 OCP:DWEL?

返回 < NR2>

OCP:VTRig 此命令用于设置 OCP 触发电平

命令语法 OCP:VTRig <NRf+>

参数 0~MAX

单位 V

例子 OCP:VTR 11.8 查询语法 OCP:VTRig? 返回 < NR2>

OCP:RESult[:OCP] 此命令用于查询 OCP 点电流值

命令语法 OCP:RESult[:OCP]?

返回参数 <NRf+>

-1 表示测试尚未结束

-2 表示被测电源电压未跌至 Vtrig, 即未进入 OCP 保护状态

单位 A

例子 OCP:RES?

返回 4.68

OCP:RESult:PMAX 此命令用于查询 PMAX 点

命令语法 OCP:RESult:PMAX?

返回参数 < NR2>, < NR2>, < NR2>

单位 W, V, A

例子 OCP:RES:PMAX? 返回 55.34, 11.8, 4.69

表示 PMAX 点最大输出功率为 55.34W, 此时电压为 11.8V, 电流为 4.69A

5.8. OVP测试命令

OVP[:STATe] 此命令用于启动或停止 OVP 测试

命令语法 OVP[:STATe] <bool>

参数 0 | 1 | OFF | ON

例子 OVP ON

查询语法 OVP[:STATe]?

返回 0|1

OVP:VTRig 此命令用于设置 OVP 触发电平

命令语法 OVP:VTRig <NRf+>

参数 0~MAX

单位 V

例子 OVP:VTR 4 查询语法 OVP:VTRig? 返回 < NR2>

Z H

OVP:RESult[:OVP] 此命令用于查询 OVP 点电压值

命令语法 OVP:RESult[:OVP]?

返回参数 <NRf+>

-1 表示测试尚未结束 -2 表示未启动 OVP 测试

单位 V

例子 OVP:RES?

返回 6.68

OVP:RESult:TIME 此命令用于查询 tovp

命令语法 OVP:RESult:TIME?

返回参数 < NR2>

单位 S

例子 OVP:RES:TIME?

返回 0.126

5.9. Timing测试命令

TIMing[:STATe] 此命令用于启动或停止 Timing 测试

命令语法 TIMing[:STATe] <bool>

参数 0 | 1 | OFF | ON

例子 TIM ON

查询语法 TIMing[:STATe]?

返回 0|1

TIMing:LOAD:SETTing 此命令用于确定 Timing 测试时是否改变负载设置

命令语法 TIMing:LOAD:SETTing <bool>

参数 0 | 1 | OFF | ON

设置为ON,则启动测试后,根据TIMing:LOAD下的设置改变负载, 结束测试后,关闭负载输入;设置为OFF,则启动/停止测试,都不改

变负载设置;

例子 TIM:LOAD:SETT OFF 查询语法 TIMing:LOAD:MODE?

返回 <mode>

TIMing:LOAD:MODE 此命令用于设置 Timing 测试时的带载模式

命令语法 TIMing:LOAD:MODE <mode>

参数 CURR | VOLT | POW | RES | OFF

例子 TIM:LOAD:MODE CURR 查询语法 TIMing:LOAD:MODE?

返回 <mode>

TIMing:LOAD:VALue 此命令用于设置 Timing 测试时的带载参数

命令语法 TIMing:LOAD:VALue <Nrf+>

参数 A / V / W / ohm, 取决于TIMing:LOAD:MODE

例子 TIM:LOAD:VAL 1 查询语法 TIMing:LOAD:VALue?

返回 <NR2>

TIMing:TSTart:SOURce 此命令用于设置启动测试的触发源

命令语法 TIMing:TSTart:SOURce <source>

参数 VOLT | CURR | EXT 例子 TIM:TST:SOUR VOLT 查询语法 TIMing:TSTart:SOURce?

返回 <source>

TIMing:TSTart:EDGE 此命令用于设置启动测试的触发沿

命令语法 TIMing:TSTart:EDGE <edge>

参数 RISE | FALL

例子 TIM:TST:EDGE RISE 查询语法 TIMing:TSTart:EDGE?

返回 <edge>

TIMing:TSTart:LEVel 此命令用于设置启动测试的触发电平

命令语法 TIMing:TSTart:LEVel <Nrf+>

参数 取决于启动触发源,即Timing:TSTart:SOURce

例子 TIM:TST:LEV 1

查询语法 TIMing:TSTart:LEVel?

返回 <NR2>

TIMing:TEND:SOURce 此命令用于设置结束测试的触发源

命令语法 TIMing:TEND:SOURce <source>

参数 VOLT | CURR | EXT 例子 TIM:TEND:SOUR VOLT 查询语法 TIMing:TEND:SOURce?

返回 <source>

TIMing:TEND:EDGE 此命令用于设置结束测试的触发沿

命令语法 TIMing:TEND:EDGE <edge>

参数 RISE | FALL

例子 TIM:TEND:EDGE RISE 查询语法 TIMing:TEND:EDGE?

返回 <edge>

TIMing:TEND:LEVel 此命令用于设置结束测试的触发电平

命令语法 TIMing:TEND:LEVel <Nrf+>

参数 取决于启动触发源,即Timing:TEND:SOURce

例子 TIM:TEND:LEV 1 查询语法 TIMing:TEND:LEVel?

返回 <NR2>

TIMing:RESult 此命令用于查询 Timing 测试结果

命令语法 TIMing:RESult?

单位 S

例子 TIM:RES? 返回 <NR2>

5.10. Peak 测试命令

Peak 指令可用于读出启动测试后的的最大值/最小值;启动 Peak 测试后,自动清除峰值记录.

PEAK[:STATe] 此命令用于启动/停止峰值测试

命令语法 PEAK[:STATe] <bool>

例子 PEAK ON

PEAK:CLEar 此命令用于清除峰值记录

命令语法 PEAK:CLEar 例子 PEAK:CLE

PEAK:VOLTage:MAXimum? 此命令用于读取电压最大值

命令语法 PEAK:VOLTage:MAXimum?

例子 PEAK:VOLT:MAX?

返回参数 <NR2>

PEAK:VOLTage:MINimum? 此命令用于读取电压最小值

命令语法 PEAK:VOLTage:MINimum?

例子 PEAK:VOLT:MIN?

返回参数 <NR2>

PEAK:CURRen:MAXimum? 此命令用于读取电流最大值

命令语法 PEAK:CURRent:MAXimum?

例子 PEAK:CURR:MAX?

返回参数 <NR2>

PEAK:CURRent:MINimum? 此命令用于读取电流最小值

命令语法 PEAK:CURRent:MINimum?

例子 PEAK:CURR:MIN?

返回参数 <NR2>

5.11. TWaveform 瞬态波形攫取命令

TWAVeform 指令可用于获取电流从 la 向 lb 变化时的电压、电流瞬态波形

TWAVeform[:STATe] 此命令用于启动/停止瞬态波形攫取

命令语法 TWAVeform[:STATe] <bool>

例子 TWAV ON

TWAVeform:IA 此命令用于设置 la

命令语法 TWAVeform:IA <Nrf+>

例子 TWAV:IA 1

TWAVeform:IB 此命令用于设置 lb

命令语法 TWAVeform:IB <Nrf+>

例子 TWAV:IA 3

TWAVeform:TINTval 此命令用于设置采样间隔,范围 10us ~ 1ms

命令语法 TWAVeform:TINTval <Nrf+>

例子 TWAV:TINT 0.00001 采样间隔 10us

TWAVeform:POINts 此命令用于设置采样点数,范围 2~4096

命令语法 TWAVeform:POINts <Nrf+>

例子 TWAV:POIN 100 采样 100 个点

TWAVeform:VOLTage? 此命令用于读取电压波形数据

命令语法 TWAVeform:VOLTage?

例子 TWAV:VOLT?

TWAVeform:CURRent? 此命令用于读取电流波形数据

命令语法 TWAVeform:CURRent?

例子 TWAV:CURR?

认证与品质保证

JT633 系列可编程直流电子负载完全达到手册中所标称的各项技术指标。

质量保证

本公司对本产品的材料及制造,自出货之日起,给予一年的质量保证。

保修服务

本产品若需保修服务或维修,请将产品送回本公司指定的维修单位。送回本公司作保修服务的产品,客户须预付寄送到本公司维修部的单程运费,本公司将负责支付回程运费。产品若从其它国家回厂维修,则所有运费、关税及其它税赋均须由客户承担。

质量保证限制

上述的保证不适用因以下情况所造成的损坏:

客户不正确或不适当的维修产品:

未经授权的修改或误用;

在指定的环境外操作本产品,或是在非指定的维修点进行配置及维修。

客户自行安装的电路造成的损坏。

通告本手册的内容如有更改,恕不另行通知,解释权归本公司。